A Robust Reconstruction for Unstructured WENO Schemes

نویسندگان

  • Yuan Liu
  • Yong-Tao Zhang
چکیده

The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate cases when the mesh quality varies for complex domain geometry. In this paper, we combine two different WENO reconstruction approaches to achieve a robust unstructured finite volume WENO reconstruction on complex mesh geometries. Numerical examples including both scalar and system cases are given to demonstrate stability and accuracy of the scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework on unstructured meshes

In this paper, we adapt a simple weighted essentially non-oscillatory (WENO) limiter, originally designed for discontinuous Galerkin (DG) schemes on two-dimensional unstructured triangular meshes [35], to the correction procedure via reconstruction (CPR) framework for solving nonlinear hyperbolic conservation laws on two-dimensional unstructured triangular meshes with straight edges or curved e...

متن کامل

Accelerating high-order WENO schemes using two heterogeneous GPUs

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...

متن کامل

A New Multidimensional Relativistic Hydrodynamics code based on Semidiscrete Central and WENO schemes

We have proposed a new High Resolution Shock Capturing (HRSC) scheme for Special Relativistic Hydrodynamics (SRHD) based on the semidiscrete central Godunov-type schemes and a modified Weighted Essentially Non-oscillatory (WENO) data reconstruction algorithm. This is the first application of the semidiscrete central schemes with high order WENO data reconstruction to the SRHD equations. This me...

متن کامل

Numerical Simulations of the Steady Euler Equations on Unstructured Grids

This thesis is concerned with effective and robust numerical schemes for solving steady Euler equations. For solving the nonlinear system resulting from the discretization of the steady Euler equations, we employ a standard Newton method as the outer iterative scheme and a linear multigrid method as the inner iterative scheme with the block lower-upper symmetric Gauss-Seidel iteration as its sm...

متن کامل

Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case

In this paper, a class of fifth-order weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving one-dimensional nonlinear hyperbolic conservation law systems is presented. The construction of HWENO schemes is based on a finite volume formulation, Hermite interpolation, and nonlinearly stable Runge–Kutta methods. The idea o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013